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We show that the one- and two-dimensional ideal Bose gases undergo a
phase transition if the temperature is lowered at constant pressure. At the
pressure-dependent transition temperature 7.(P) and in their thermody-
namic limit the specific heat at constant pressure ¢, and the particle density
n diverge, the entropy .S and specific heat at constant volume ¢, fall off
sharply but continuously to zero, and the fraction of particles in the ground
state Ny/N jumps discontinuously from zero to one. This Bose-Einstein
condensation provides a remarkable example of a transition which has
most of the properties of a second-order phase transition, except that the
order parameter is discontinuous. The nature of the condensed state is
described in the large but finite N regime, and the width of the transition
region is estimated. The effects of interactions in real one- and two-dimen-
sional Bose systems and recent experiments on submonolayer helium films
are discussed briefly.
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1. INTRODUCTION

Much theoretical work has been done recently on model one-dimensional
(1D) and two-dimensional (2D) systems because they are usually more easily
solved than three-dimensional (3D) models and because they have a bearing
on the properties of thin films of material and laminar or chainlike 3D
samples. One of the more widely discussed models is the ideal Bose gas.
While the 3D ideal Bose gas has long been known‘® to have a phase transition,
the 1D and 2D ideal Bose gases have always been regarded as having no phase
transition at any nonzero temperature. This result is consistent with a
rigorous and much more general proof® that there can be no Bose condensa-
tion in a wide class of 1D and 2D Bose systems.

However, one point that had not been noticed as far as we know is that
the question of whether a phase transition takes place in a 1D or 2D ideal
Bose gas has always been studied assuming that changes take place at con-
stant volume (or density). We recall that the 3D ideal Bose gas undergoes a
first-order phase transition when the temperature is lowered at constant
pressure.® All particles go into the lowest single-particle state, the density
becomes infinite everywhere, and there is a discontinuous drop in the entropy
accompanied by a singularity in the specific heat at constant pressure c¢,. We
will show that in going from 3D to 2D or 1D the first-order transition dis-
appears. Nevertheless, there is a sharp but continuous phase transition into
the ground state at a nonzero, pressure-dependent temperature T.(P). At T,
the particle density diverges everywhere in the system, the entropy vanishes,
¢, diverges, and the specific heat at constant volume ¢, vanishes. Finally, the
susceptibility x, defined as the response of the usual superfluid order param-
eter (> to its thermodynamically conjugate field, and the number N, of con-
densed particles to which y is proportional are also found to diverge at T.(P).

A careful consideration shows that for realistic (e.g., boxlike) boundary
conditions the system can exist in states of arbitrary temperature inside the
supposedly forbidden region of T' < T,(P), but only in a collapsed state in
which essentially all the particles are in the ground state and the volume is a
subextensive variable; i.e., ¥V = O(N'?). With the temperature regarded as a
fixed parameter, this region is characterized by pressures exceeding a corre-
sponding critical pressure P(T).

In Section 2 we present a detailed calculation of the thermodynamics and
susceptibility of the 2D ideal Bose gas. Results alone are presented for the 1D
ideal Bose gas.

We have already emphasized in a recent paper® that the nature of a
phase transition may crucially depend upon the constraint imposed on the
system. Here we have an extreme manifestation of that effect; namely, the
constant-pressure constraint shifts the transition temperature from 0°K-—its
value at constant volume—to a finite temperature T,(P).
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It should be noted that the fact that the collapsed state is also Bose
condensed is not in contradiction with the nonexistence theorems.® In fact,
following Widom’s® observation that 1D and 2D ideal Bose gases that are
rotating or are in a uniform gravitational field do condense, Rehr and
Mermin® noted that a crucial assumption in the proof of these theorems is
that the density be finite everywhere. Our result is thus another example in
which the nonexistence theorems break down due to the occurrence of an
infinite density. Furthermore, it is clear that Widom’s results should follow
from the general rule that Bose condensation will occur once the pressure
even locally exceeds P,(T). '

In Section 3 we discuss the quite unusual thermodynamics of the “con-
densed” phase. In particular, when boxlike boundary conditions are imposed
on the system the total volume V is subextensive: ¥ oc N2, where N is the
total number of particles.

Real Bose gases cannot have infinite density and therefore cannot
collapse in this way. In Section 4 we discuss the various possible effects of
interactions on the above transition, drawing on the insight provided by
quantum lattice gas models'® We conclude the section with a discussion of
possible interpretations of the recent experimental results of Bretz and Dash®
on submonolayer films of helium.

In the appendix we give a detailed derivation of the thermodynamic
functions of the 2D Bose gas which we think is essentially correct for both the
normal and the condensed phases of the system, and also for the transition
region between the two phases. The width of the transition region is calcula-
ted. Its other properties will be discussed in a future article.

A preliminary report of this work has appeared in Ref. 9.

2. THERMODYNAMICS AND SUSCEPTIBILITY OF THE TWO-
DIMENSIONAL IDEAL BOSE GAS

All thermodynamic functions are expressible in terms of the following
functions (Ref. 1, Section 7):

o0

Fye) = Z 579 exp(— sa) (1)

s=1

In particular, for the 2D gas we will need
Fo(e) = [exp(e) — 1]71 2

Fi(e) = —In[l — exp(—o)] &)
and Fy(e), which is not an elementary function but has the following be-
havior (Ref. 1, Appendix):

Fo(e) 37 + «lna as a—>0 @
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The particle density is given by

n = (2m)~2 f d2k{exp[(hk?2mksT) + o] — 131

= (mksT [2ah®)Fy(«) )]
where m is the boson mass, kj is Boltzmann’s constant, and
o= —plksT (©6)
where u is the chemical potential. Thus, using Eq. (3), we see that
« = —In[l — exp(~To()/T)] Q)
where
To(n) = 2nhcnimky ®)

is a characteristic n-dependent temperature. The internal energy per particle
is given by

u = n~'(Q2m)"2 f A2k [2m){expl(2k?2mksT) + o] — 1}-1

= kpTFy(0)/ Fy(e) )]
Using Egs. (5) and (9) and the relation
P = nu (10)
we easily show that
P = mkg®T?Fy())2m%h = kpTFy(e){ (1D
and
cofks = 2F3(0)/Fi(«) — Fy(e)/Fo(e) (12)
and
¢olkp = 2F3(e){[2F5(e) Fo()/ Fi()*] — 1}/Fi(e) (13)

where Ay, = (27%2/mksT)*? is the thermal de Broglie wavelength and c, and
¢, are the specific heats (per particle) at constant volume and pressure,
respectively.

From Eq. (11) we see that if the pressure P is fixed and the temperature
is lowered, Fy(«) must grow. However, its maximum value #%/6 occurs when
o = 0, at which point F;(e:) and hence the density n diverge. This occurs at a
finite, pressure-dependent temperature

TAP) = [20h2P |mkp?Fo(0)]2 = (1242P Jamiky?)*? (14)
Figure 1 is a sketch of the P-T diagram, where the curve

P = mmkg?T?[124% = P(T) (15)
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Pressure - P

Temperature - T

Fig. 1. Qualitative phase diagram of the 1D or 2D ideal Bose gas in the P-T plane,
Unless the effect of the boundaries is taken into account (cf. Section 3), the gas will be
completely collapsed along the solid curve P = P(T) [see Egs. (15) and (24)] and could
not exist in an equilibrium state with P > P(T), even as a condensed phase. The dashed
curve is a typical isochore. Cooling at constant volume avoids the condensed region.

separates the normal region from the condensed region. It appears as though
the temperature of the system cannot be lowered below T,(P) at fixed pressure,
nor can the system sustain a pressure greater than P(T) at fixed temperature.
Figure 2 is a sketch of a typical isotherm in the P~V plane. We note that
(6P [0V )y vanishes as ¥V — 0.

In contrast to the above constant-pressure results, we see from Eq. (7)
that if the temperature is lowered at constant density (or volume), « attains
its minimum value of zero—leading to a collapse of the gas—only when T — 0.

We next calculate the susceptibility in the noncondensed state. Let us
define the correlation function

8@ = O (16)

where (r) is the particle field operator. The susceptibility x, which is a measure
of the response of {¢(r)> to a thermodynamically conjugate external field, is
then given by

X = (7)™ | dr g@ an
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[

Pressure -

Volume -~ V

Fig. 2. Isotherms in the P~V plane. The solid curves represent qualitatively the isotherms
of the ideal gases. Along the 3D isotherm the pressure is constant from point a to b,
while along the 1D or 2D isotherm 6P 2} = 0 only at the point ¥ = 0, With a small hard
core a deviation from ideal behavior—indicated by the dashed curves—is expected only
for small ¥ in the 2D and 3D gases. The plateau at small ¥ is expected to disappear
completely in the 1D gas.

It then follows that
x = No/ksT (18)

where N, is the number of particles in the lowest single-particle state and is
given by the usual Bose population function

No = [exp(—p/ksT) — 117 = [exp(e) — 1171 (19)
Let us now define the variable
e=T|T(P) -1 (20)
Usings Eqs. (4) and (11), we find that
o — —u2%/(31n¢€) as T— T (P)* 21

Therefore, as T — T (P)*
n— —QBmP /7% 2 In ¢, ¢, — 72kg/3e(In €)?

2
¢, — —mkp/(31n ¢), x —> —3(In €)/n%kpT e @2
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As T— 0, with n and hence T,(n) held constant,
¢p — (m*ks/INT|T0)? exp(To/T)
ey — (@kp/3)N(T[To),  x— (ksT)~* exp(To/T)

A similar analysis for the 1D ideal Bose gas leads to the following results.
At fixed pressure, there exists a collapse temperature given by

(23)

TAP) = [32xh°P?[m{(3[2)*]"® (24)
where {(x) is the Riemann zeta function. As T'— To(P)*, withe = T/T{P) — 1,
n—>const x (mP[h?) 3/ 12, ¢, — const x kpfe? 25)

¢, — const X kge, x —> const/kgT,€?

At a fixed linear density », there again exists a characteristic temperature 7,
given by
To(n) = 2at?n®/mky (26)
such that as T 0
¢, —const X kg(To/T),
¢, — const x kg(T/T,)*? (27)
x — const x Ty/ksT?

3. THE CONDENSED PHASE OF THE 2D BOSE GAS

From the results of Section 2 one might be tempted to conclude that the
2D ideal Bose gas cannot exist in states with a pressure greater than P(T).
However, those results were obtained by working in the thermodynamic
limit and replacing all sums over single-particle states by integrals. It turns
out, as might have been expected, that this is not a valid procedure for
P > P.(T). In the appendix we show that a correct procedure is to treat the
ground-state term in these sums exactly, while still using a slightly modified
integration approximation for the sum on all the other states. It is also essential
to defer taking the thermodynamic limit until the end of the calculation.

The equations for N and P thus become [see Egs. (A.34) and (A.18) in the
appendix]

N = Ny + VFi(fe; + &)/A% (5
P = (Noeo/ V) + [ksTFy(Ber + )fA%]+ [e1Fi(Bey + o)/An] (1)
where 8 = 1/kgT,
No = 1/[exp(Beo + «) — 1]
is the occupation number of the ground state, and ¢, and ¢, are the energies of
the single-particle ground state and the first excited state, respectively. The

exact value of «; is not important, however, except perhaps in a small transi-
tion region around P.(T") (see the appendix). Similarly, the last term in (11°)
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is important only in the transition region. Below P(T), Eqs. (5) and (11") have
solutions where « = O(1) and N, = O(1), and therefore ¢,, as well as the
first term on the rhs of both equations, can all be neglected. Above P{T), the
only role of ¢, is to keep the arguments of F; and F, from falling below
0(1/V), as we shall presently see. When this is secured, the last term of (11")
is at most of order O(In V'/V'), and is thus again negligible compared to the
second term.

Since the second term on the rhs of Eq. (11") is bounded by P,(T), the
only way we can hope to satisfy this equation when P > P (T) is through a
significant contribution of the other terms. The first term represents the
ground-state contribution to the pressure and is therefore strongly dependent
upon the boundary conditions at the walls of the box. If periodic boundary
conditions are imposed upon the single-particle states, ¢, = 0 and the first
term vanishes. If, on the other hand, the wave function must vanish at the
walls, we get

o = O(2/mV) # 0 (28)

This rather unusual situation—in which results depend upon the boundary
conditions—forces us to consider carefully what boundary condition is
appropriate.

The boundary condition is really a mathematical artifice used to circum-
vent the need to consider explicitly the forces exerted by the walls that keep
the particles inside the box. If the walls could be represented by a truly
infinite potential barrier, the zero boundary condition would be rigorously
correct. Even for realistic walls, it appears to be much better justified than the
periodic boundary condition. We therefore use it to calculate the first terms
on the rhs of Egs. (5") and (11").

In order to solve Eq. (11") for « when P > P(T), assuming for the mo-
ment that we can neglect the last term, we must have

Noeo/V = 0(1) (29)
Therefore, since ¢, = O(1/V), we find
No = (eofksT + o)™t = O(V?) (30)

This equation requires « to be negative and of order O(1/V), so as to cancel
most of Bey, hence the importance of ¢; in (5') and (11). Consequently, using
Eq. (3) and the fact that ¢, — ¢q = O(1/V), the second term on the rhs of
Eq. (5") becomes

VF (e, /ksgT + )/A% = O(V1In V) « N, 3y
and we can indeed neglect it. We thus have

N = Ny = 0(V? (32)
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i.e., all the particles (except for a negligible number) go into the condensate
and the system collapses to a volume which is subextensive:

V = O(N2) (33)
The total pressure can thus be writien as
P = NP, + P(T) (34)
where
Py = — 0[OV = ¢/V (35)

is the pressure of a single particle in the lowest state and depends only on the
volume and the shape of the box, but not on the temperature.

Even though the volume is subextensive in the condensed phase, it can
still be rather large. As a function of pressure it has the following form:

V ~AN/[P = P(T)]}""* (36)

Close to the transition point one may also express this equation in an alterna-
tive form:

V ~{N[[T(P) — TT** (37)

These expressions are valid for the condensed phase except inside a very
small transition region around P.(T") over which the system changes from the
normal to the condensed state. The size of this region of course goes to zero
in the thermodynamic limit. A similar behavior is exhibited by the entropy,
which in the condensed phase is proportional to V' [see Eq. (A.40)]. In Fig. 3
we have sketched qualitatively some of the interesting thermodynamic
quantities as functions of 7" at a fixed P.

An interesting result that emerges from these calculations is that, although
all the usual extensive thermodynamic quantities tend continuously to zero
(on the scale of N) as the condensation point is approached from the normal
phase and remain zero in the condensed phase, the occupation number N,
of the lowest state undergoes a jump from essentially zero to essentially N.
Thus, although the transition is certainly not of the first order in the usual
sense, the order parameter which characterizes it does undergo a discontinuous
change. This result reminds us of the puzzling property of thin films of
superfluid helium, namely that the superfluid density p, appears to be dis-
continuous at the transition point®%!V in contrast to the transition in bulk
helium, where p, goes to zero continuously at the lambda point.

4. EFFECTS OF INTERACTIONS

The interactions between He atoms in real *He fluid consist of a repul-
sive, short-range potential (which we will replace by a hard core, for simplicity)
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c
TEMPERATURE

Fig. 3. Qualitative graph of some thermodynamic quantities as functions of T at constant
P. Shown are the particle density n, the fraction of particles in the ground state Ny/N,
and the heat capacity per particle ¢,. We assume a large but finite total N.

and a long-range attractive tail."’ Each of these parts plays an essential and
distinct role in determining the properties of real *He fluid.

We begin by discussing the effect of the hard core. In one dimension
even a small hard core has a catastrophic effect on the transition since the
particles cannot move past each other. Indeed, the 1D Bose gas with a
repulsive delta-function interaction is equivalent to an ideal 1D Fermi gas!?
and thus does not exhibit any of the characteristics of the transition. A 1D
Bose gas with a finite-size hard core is not expected to be radically different.

The effect of the hard core is not as dramatic in two and three dimensions.
In both cases we expect the hard core to become important only when the
density is so high that the interparticle distance is of the order of the hard-
core diameter. At such a high density (or small volume) there should be a
sharp rise in the pressure (see Fig. 2). We therefore expect that for low pres-
sures the phase transition will be retained in three but destroyed in two
dimensions. Nevertheless, an inspection of Egs. (22) reveals that a remnant
of the transition may still occur even in two dimensions: As e — 0 the density
increases logarithmically while ¢, increases more rapidly—as [¢(In €)?]7*.
But the deviations from ideal gas behavior begin only when the density is so
high that the hard core interferes with the free motion of the particles. For
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low pressures this begins to occur only for very small values of e. Our dis-
cussion does not preclude the possibility of a large peak developing in ¢, as a
function of e long before deviations from ideal gas behavior become important.

The addition of an attractive part to the hard core will assist in the
constant-pressure transition. Thus, the collapse at constant pressure of the
3D gas is expected to become a phase transition in which the density increases
discontinuously to a noninfinite value as the temperature is lowered. One
would also expect that at least for weak enough interactions N, would in-
crease discontinuously. This conclusion should be valid at pressures so low
that the volume per particle V'/N around the point where the transition takes
place in the absence of interactions is much greater than the hard-core volume
v.. This conclusion is also in agreement with the phase transition of ‘He at
low pressures, where the system makes a transition directly from the gas
phase to a superfluid liquid (Ref. 1, Section 1). Our qualitative reasoning
does not tell us what will happen in two dimensions except that there is now a
chance for a transition to take place. Whatever may be the case, Bose con-
densation is ruled out because the density is bounded.

We get more definite conclusions using the quantum lattice gas (QLG)
model™ for the interacting system, of which a very clear discussion is found
in Ref. 13. In the simplest version of a QLG with a hard core and no attractive
interaction the corresponding magnetic model is a ferromagnetic, nearest-
neighbor, isotropic X-Y model and is represented by the Hamiltonian of Eq.
(38) below with J; = 0. This model is believed to have a transition in three
dimensions but was proved by Mermin and Wagner® not to have sponta-
neous magnetization in the x or y directions (corresponding to Bose con-
densation in the QLG) in one and two dimensions. This result merely
confirms our previous conclusion, namely that the presence of a hard core
and the nonexistence theorems of Ref. 2 rule out Bose condensation. The
question of whether one can have {(¢*> # 0, corresponding to a transition
into the liquid state, is related to the magnitude of the attractive part of the
interaction, as discussed below.

The situation changes markedly when the attractive part of the interac-

tion is introduced. A Heisenberg-Ising model is obtained, with the Hamil-
tonian

H= =3 [Jyofof + Jioios" + oi'op)] — h D, of (38)
@ 7

where 2, signifies a sum over nearest-neighbor spins, the ¢,% are Pauli spin
operators, i represents an external magnetic field and is related to the chemical
potential, and J; and J, are both positive and related to the strength of the
attractive forces and to the hard core size, respectively.

In one dimension, phase transitions cannot occur. In two dimensions
two cases are distinguishable:
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(a) Strong attraction: J; > J,. Here we expect a phase transition to a
state with nonzero {¢*> but with no Bose condensation.*
(b) Weak attraction: J; < J,. Here no definite statement can be made.®

We conclude with a brief statement of four as yet unanswered questions
raised by this paper.

(a) Is there a phase transition in a 2D Bose fluid with a hard-core and
weak attraction?

(b) While in three dimensions the phase transition at constant P is
always first order, with or without interactions, the phase transition in two
dimensions is of a different kind in the ideal gas but might become an ordinary
first-order transition in the presence of attractive interactions.

(c) In the case of the first-order transition in the 3D ideal gas, we do not
know whether phase separation actually occurs: This depends upon the
surface tension, which may be absent in the ideal gas but will reappear when
attractive interactions are present.

(d) Bretz and Dash® obtained a peak in the specific heat of submono-
layer *He films at a finite temperature. This result was attributed® to in-
homogeneities of the substrate, which produce nonuniform potentials that
can also bring about an incipient Bose condensation similar to the one we
have been discussing and a consequent peak in the specific heat. Were these
experiments performed under constant lateral pressure, such a peak could be
related to the one that we find. Even if this is not really the case, such behavior
would still be obtained if the system broke up into a series of droplets due to
attractive interactions® and/or substrate inhomogeneities.*® In that case
each droplet would be, effectively, under something like a constant pressure.

Further investigation is necessary in order to determine whether there is
any connection between the transition we have found in a 2D Bose gas and
the superfluid-to-normal transition observed in the somewhat thicker helium
films where superflow and third sound can occur. We have mentioned in
Section 3 the fact that in these films the transition seems to be accompanied
by a jump in.p; even though none of the usual extensive properties such as

4 This phase transition is not ruled out by the theorem of Ref. 14. We expect it to occur
since the case Jy > J should be qualitatively similar to an Ising model. We also note
that while the usual spin wave argument does rule out spontaneous magnetization in the
isotropic case, it allows for a finite <¢*) in this case.

5 We know that in the ground state {o*> vanishes while {o*> and/or {¢*> do not vanish.
Mermin and Wagner 4% showed that {¢*> = {¢¥D> = 0 for nonzero temperatures.
Hence, since higher temperatures usually lead to a smaller order parameter, we might
expect that (o> = 0 for all temperatures. Nevertheless, the rigorous nonexistence
theorems do rot rule out a transition into a state of nonzero {¢*)> at a finite temperature,

8 Both the effective mass and the strength of the attractive interaction for adsorbed He
atoms will be different from those in the gas. A larger ratio Jy/JL seems reasonable.
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volume and entropy have any discontinuity. The jump in ¥, at the condensa-
tion point of the 2D Bose gas and the lack of any jump in other extensive
quantities could be connected with the above-mentioned experimental observa-
tion on helium films. But even if there is no connection (and this might well
be the case, since a superfluid helium film is very different from a 2D ideal
Bose gas), our model at least provides an example of a system where a superfluid
transition with such properties is possible. Therefore one should not im-
mediately rule out the possibility that the observed onset of superfluidity in
thin helium films is in fact a phase transition, rather than a threshold of some
strong attenuation mechanism,®0-16-18

We finally note that our results were derived using the grand canonical
ensemble, as is usually the practice in the theory of Bose-Einstein conden-
sation. If another ensemble, for example, the canonical one, were used, the
mathematics would be greatly complicated. Ordinarily, a change in the
statistical ensemble used should not essentially alter the values of average
quantities but may affect only the fluctuations around the average. It is an
interesting open question whether this will be the case here, or whether
more drastic changes will follow, for this rather unusual system.

APPENDIX. STATISTICAL MECHANICS OF THE 2D IDEAL BOSE
GAS

Our starting point is the grand-canonical partition function Z; given by
Zg=Trexp(—BH — aN) = [ [1 — exp(—Be, — 0)]™*  (A.1)
k

where ¢, = #2k%/2m, and where H and N are the Hamiltonian and particle
number operators, respectively. The internal energy U is given by

U= —8(InZe)/of = > eflexp(Be, + o) — 1] (A.2)
k
and the pressure is given by
_/ AN\ _1dlnZ; de OV
P_< ov,/, ~ B oV zexp(ﬁek-l—oc)— 1 (A3)

If the volume of the system is varied without changing the shape (i.e., the
ratios of all linear dimensions to each other are kept fixed), we find that
€, ~ 1/V. Therefore
0¢, [0V = —¢ |V (A.4)
and we can write
P=UlV (A.5)
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This is an exact result. One might be tempted to use another well-known
relationship to calculate P, namely

P = (ksT/V) In Zg (A.6)

This is not exact, because (A.6) is derived under the assumption that In Z;
is an extensive quantity. But the ground-state term in In Z; is not-extensive,
nor may it be discarded here, as we shall see later. [See the discussion following
Eq. (A.18).]
In what follows, we will assume that 8, i.e., T, is finite, i.e., of order one.
Using (A.4) or (A.5), we can write P in the form

1 €4
P= —17% exp(Be; + o) — 1 (A7)

In Fig. 4 we show a schematic graph of the summand of this equation,

Be/lexp(Be + o) — 1] (A.8)
as a function of ¢, assuming that « is slightly negative, so that
Beo + o = o(1)V) (A.9)

where ¢, 18 the energy of the single-particle ground state. We will see later that
this assumption begins to hold when the condensation point is approached

{ 7e(t)
|
|
|
|
|
|
|
1
|
|
I
'F ! o)
|
|
|
|
| L1 | L -
€0 €2 € €5 €3

SINGLE PARTICLE ENERGY

Fig. 4. Qualitative graph of the function. Be[exp(Be + «) — 1] vs. the single-particle
energy e for Be; + « = o(1/V). This function shoots up to large values, i.e., of order
1/o(1), only in a region of order o(1/V) around . The same graph also describes
qualitatively the function (A.30), the summand of (A.37), and most other summands
which might appear in such a sum on single-particle states.
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closely enough from the normal phase, and continues to hold in both the
transition region and in the condensed phase. We assume zero boundary
conditions for the single-particle wave functions, so that

= O(1)V) # 0 (A.10)

It is clear from Fig. 4 that, except for a neighborhood of ¢, that is of order
o(1/V), (A.8) is perfectly smooth and finite, and is moreover a monotonic
decreasing function of e. It is also concave upward.

The last properties result from the fact that « is slightly negative. Hence,
the derivative of (A.8) with respect to eis

[eP<r (1 — Be) — 1][(e?** — 1)? (A.11)
Since
1 — Be < g5 (A.12)

the numerator of (A.11) satisfies
efetyl —Be) — 1 <e*—1<0 (A.13)

That the second derivative is positive, and the function (A.8) therefore
always concave upward, follows from the following considerations:

i [elie+a(1 - Bf) - 1] _ ﬁe£e+a1)3 [Be(e‘BE“‘ + 1) . 2(6554-0: — 1)]

d€ (eﬁe+(z - 1)2 (eﬁe+tx —

The square brackets on the r.h.s. can be developed as follows:
2
ﬁe[2+(ﬁe+)+(3€+°‘) ] [ﬁe+a+(ﬁ+°‘) }

[er ap 4 Gzt Gegar, ]

B ror . ]

_a[ge Fot

e z[me o, Ger ey +]

> —a[ﬁe+a+(ﬁ€;—'a)2 ]—Za

= —oef** — 1) -2 >0

because « is negative.

It is now reasonable to expect that we might be able to approximate the
sum in (A.7) for ¢, # €, by an integral. In order to make this statement more
precise, we will specialize to the case where the ¢, are nondegenerate and



314 L. Gunther, Yoseph Imry, and David J. Bergman

equally spaced in energy. Since (A.8) is a decreasing function, a lower bound
to the sum is given by the integral of (A.8) from ¢ to infinity:

J‘m Vge de < Z €
= S

where 1/Vg is the level spacing, which is of order O(1/V). Because (A.8) is
also concave upward, an upper bound to the sum is given by a similar
integral from ey, to infinity, where «,,, is halfway between ¢, and ;. We can
thus write

fw Vge de < Z €1
€ eXp(BE + 0‘) -1 €p#€p eXp(ﬁG;c + (x) -1

< Vge de
< f xpBe + ) — 1 (A1

The integrals in (A.14) are of order O(V) each, and they differ by less than
Yerp/[exp(Beyje + o) — 11 = O(1) (A.15)

We can therefore write

e ge de 1

VZ exp(Bey + @) — 1 f exp(Be + o) — 1 O(T/) (A-16)

Actually, the precise values of ¢, will depend on the shape of the box,
and they will usually be neither equally spaced nor nondegenerate. The
average level spacing will, however, be independent of € and of the precise
shape of the box, and we expect that (A.16) will continue to hold even then,
with 1/Vg now standing for the average level spacing. It is not easy to prove
this rigorously, and we do not attempt to provide such a proof here.”

Equation (A.16) is further transformed by defining x = ¢ — ¢;,. We thus
find

f‘” ge de _f‘“ g(x + ) dx
o exp(Be + ) — 1 ), exp(Bx + Be; + o) — 1

= kB FZ(Bel + ) + Fl(,Be1 +a) (A.17)

7 In the event that future investigations will prove the error estimate of Eq. (A.16) to be
overly optimistic [due to an unforeseen dependence on details of the level distribution
which will lead to, e.g.,an O(V /%) error], our only result that will be affected is the
estimate of the transition region. All the rest of the discussion, including that of the
importance of the first term on the right-hand side of Eq. (A.18), will remain valid.
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We can thus write (A.7) in the following form:

&V

— kB
= exp(Be; + ) = Fulber +)

+ 3 Rt )+ 0(-117) (A.18)

Note that the first term on the rhs is the pressure exerted by particles in
the ground state. We have already discussed this term in Section 3 [see Eq.
(28) and the discussion thereof]. But we would now like to point out that
this term is not reproduced by the incorrect equation (A.6). This explains
why it was essential to use the correct expression (A.3) for P. The problems
with (A.6) arise due to the fact that the condensed state we are considering
has a subextensive volume.

Although we have derived Eq. (A.18) under the assumption (A.9), it is
easy to argue that it is still valid even when (A.9) is not satisfied, i.e., when

Bey + o = O(1/V) (A.19)

This is because (A.8) is now finite even at ¢,. We can therefore use the integra-
tion approximation for the entire sum and the error thus incurred is still only
O(1/¥), though one has to argue more carefully to derive this result since
(A.8) may now have a region with a positive slope for small . For this case
the first term in (A.18) is of the same order as the error, i.e., O(1/V).

The third term in (A.18) is also of order O(1/V) when « is large. But
when « is small this term combines with the second term to give a result which
is independent of the precise value of ¢, in all the significant orders:

keT
)\Bz F2(B€1 + o) + 55 /\2 Fl(ﬁfl + o)

H?

kB FQ(O) -+ BzT (,861 + oz) ln(ﬁel + oc)
Ah

— —651- In(Be; + @) + O(Be; + «)
At

kgT
= /\1; F2(0)+

"BT “In(Be, + @) + OBer + o) (A.20)

If « > O(1/V), we can neglect €, and if « < O(1/V), we can write
In(Be; + «) = —In ¥V + O(1) (A21)

which is again independent of the precise value of ¢;. This result is of impor-
tance if we wish to investigate the transition region between the normal and
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the condensed phases around P.(T). From (A.18) and (A.20) we find that,
for small «,

&Ny |, kgTo

AP =P — P(T) = 30 + o= In(Be, + a) (A.22)

In the condensed phase
€0y

_ kBTOC _ ln V
while in the normal phase
eV, 1 kgTo

The transition region is reached when both terms on the rhs of (A.22) are
equal. This leads to the following relationships:

Beo + « = O(/VIn V) (A.25)
No=0VhnV) (A.26)
a= —Be + O(/VInV) = —0(/V) (A.27)

The exact equations for the edge of the transition region AP, and for Be, + o
at that point are

Beo + a = —AL/[V'In B(e; — €)] (A.28)
AP, = —2¢[In Ble; — €)]/AL = O(In V/[V) (A.28a)
The other quantity we are interested in calculating is

N = Z {1/[exp(Be; + ) — 1]} (A.29)

The summand here is always a monotonic decreasing function of ¢,, and is also
concave upward. Moreover, if we consider the function

(1/V)/lexp(Be + o) — 1] (A.30)

under the assumption (A.9), we find that it has a form qualitatively described
by Fig. 4 for small e. We can thus again sandwich the sum for ¢, # ¢, between
two inequalities if we assume a constant level spacing:

J‘w Vg de < 1
o €Xp(Be + ) — 1 ~ S exp(fe + o) — 1
- f°° Ve de
€1 exp(Be + o) — 1

(A.31)

The integrals differ by less than
3/lexp(Bersz + o) — 1] = O(V) (A.32)
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and we can write

1
ekge() exp(Be, + o) — 1

(" Vg de
- Ll exp(Be + a) — 1 + o)

_(" Vg dx v
—fo exp(Bx + Be; + «) — 1 + O(V) = A2 Fi(Bey + ) + O(V)

~ _)TZ In(Be; + @) + O(V) = OV 1n ¥) + O(V) (A.33)

Therefore the error is less than the leading term by O(1/In V) when (A.9) is
valid, and we can write

N = No + (V/AR)Fy(Bey + o) (A.34)

It is easily verified that this equation is valid even when (A.9) is not satisfied.

This equation supplies us with another way of defining the transition
region: Since the first term on the rhs is negligible in the normal phase while
the second term is negligible in the condensed phase, we set

No = (V/X3)F,(Be; + o) = — (V%) In(Be; + «) (A.35)

at the edge of the transition region. This equation is exactly the same as
(A.28), which was derived in a different way, starting from AP. We also learn
from this that at AP,

Ne=N/2=0F1nV) (A.36)
By making for

InZg = —> In[l — exp(—Pe; — )] (A.37)

considerations similar to those made for P and N, we find that

InZ, = —In[l — exp{~—Pe; — «)]
+ (V2 Fo(Bey + &) + O(In V) (A.38)

when (A.9) is satisfied. It looks as though both the ground-state term and the
V(Bey + ) In(Be; + o) part of VF, are then of order O(In V), i.e., the same
as the error. Nevertheless, if these terms are kept and the whole expression is
differentiated with respect to either B, «, or ¥, one gets the right expressions
for U, N, and P, respectively! This occurs just because In Z; is not a homo-
geneous function of V. Thus, different parts of In Z, behave differently when
they are differentiated, some of them gaining in importance more than others.
This also explains why one cannot assume that In Z; is extensive. The whole
question of identifying the most important contribution to any thermody-
namic quantity becomes tricky. We have (hopefully) not made any mistakes
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so far because we never differentiated an approximate expression: Integration
approximations for discrete sums were always made only after differentiating.
Using the same caution, we calculate the entropy S from the exact

relation
S=kglnZ; + (U/T) + Nkgo (A.39)

Substituting for the three terms on the rhs from (A.38), (A.5), (A.18), and
(A.34), we get

S 2V
s = —In(Bey + @) + e Fy(Be; + &)

14 K(-@;-‘;—Jr-‘)i) Fi(Bey + @) + O(ln V) (A.40)
th
The first and third terms are always no greater than the error in this ex-
pression and may be neglected. When T — T(P) or P — P(T) in the normal
phase, S obviously tends to zero (on the scale of N) because Be; + «— O(1/V)
and V' — O(N'2). In the condensed phase the only significant term in (A.40)
is the second one, which is of order O(N1/2).
By taking all the necessary precautions that we have outlined above, we
can calculate ¢, and ¢, for the condensed phase outside the transition region
between the two phases. The results are

colks = QVINAR)[Fa(Ber + o) + Ble; — €o)Fi(Be; + )]
+ O(1/N)
= QVINI)F,0) + O(1/N) = ON~Y3) + ON~ 1) (A4])
cplks = [2PV?F(0)/eeAtuN 1(Beo + )
x [+ (F/23)(Beo + 0)F1(Be; + o) + O(1/V)]
= O(1/N*¥?) + O(log N/N) + O(1/N) (A.42)
We note that in ¢, as in P, we also get the first correction to the leading

order correctly.
Using (A.22), (A.23), and the fact that N, = N, we can write

AP = Ne V(1/V3) (A.43)
V = (NeV/AP) M2 (A.44)
V2ey = V3[eV = (eoV)V2(N[AP)?2 (A.45)
Substitgting_ the last result into (A.42) we get
colks = 2PF5(0)(eo V)12 NAZ(AP)RI2 (A.46)

This would increase to infinity as P approaches P(7T) from above, except
that when the edge of the transition region [see Eq. (A.28a)] is reached, (A.46)
ceases to be valid. Instead of increasing to infinity, ¢, then rounds off at a
value that depends upon N.
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