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We show that the one- and two-dimensional ideal Bose gases undergo a 
phase transition if the temperature is lowered at constant pressure. At the 
pressure-dependent transition temperature To(P) and in their thermody- 
namic limit the specific heat at constant pressure cp and the particle density 
n diverge, the entropy S and specific heat at constant volume c~ fall off 
sharply but continuously to zero, and the fraction of particles in the ground 
state No/N jumps discontinuously from zero to one. This Bose-Einstein 
condensation provides a remarkable example of a transition which has 
most of the properties of a second-order phase transition, except that the 
order parameter is discontinuous. The nature of the condensed state is 
described in the large but finite N regime, and the width of the transition 
region is estimated. The effects of interactions in real one- and two-dimen- 
sional Bose systems and recent experiments on submonolayer helium films 
are discussed briefly. 
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1. I N T R O D U C T I O N  

Much theoretical work has been done recently on model one-dimensional 
(1 D) and two-dimensional (2D) systems because they are usually more easily 
solved than three-dimensional (3D) models and because they have a bearing 
on the properties of  thin films of material and laminar or chainlike 3D 
samples. One of the more widely discussed models is the ideal Bose gas. 
While the 3D ideal Bose gas has long been known (1) to have'a phase transition, 
the 1D and 2D ideal Bose gases have always been regarded as having no phase 
transition at any nonzero temperature. This result is consistent with a 
rigorous and much more general proof  (2) that there can be no Bose condensa- 
tion in a wide class of 1D and 2D Bose systems. 

However, one point that had not been noticed as far as we know is that 
the questio n of whether a phase transition takes place in a 1D or 2D ideal 
Bose gas has always been studied assuming that changes take place at con- 
stant volume (or density). We recall that the 3D ideal Bose gas undergoes a 
first-order phase transition when the temperature is lowered at constant 
pressure. (1,3) All particles go into the lowest single-particle state, the density 
becomes infinite everywhere, and there is a discontinuous drop in the entropy 
accompanied by a singularity in the specific heat at constant pressure cp. We 
will show that in going from 3D to 2D or 1D the first-order transition dis- 
appears. Nevertheless, there is a sharp but continuous phase transition into 
the ground state at a nonzero, pressure-dependent temperature To(P). At To, 
the particle density diverges everywhere in the system, the entropy vanishes, 
cp diverges, and the specific heat at constant volume cv vanishes. Finally, the 
susceptibility X, defined as the response of the usual super, fluid order param- 
eter ( r  to its thermodynamically conjugate field, and the number No of con- 
densed particles to which X is proportional are also found to diverge at To(P). 

A careful consideration shows that for realistic (e.g., boxlike) boundary 
conditions the system can exist in states of  arbitrary temperature inside the 
supposedly forbidden region of T < T~(P), but only in a collapsed state in 
which essentially all the particles are in the ground state and the volume is a 
subextensive variable; i.e., V -- O(NII2). With the temperature regarded as a 
fixed parameter, this region is characterized by pressures exceeding a corre- 
sponding critical pressure Pc(T). 

In Section 2 we present a detailed calculation of the thermodynamics and 
susceptibility of  the 2D ideal Bose gas. Results alone are presented for the 1D 
ideal Bose gas. 

We have already emphasized in a recent paper (4) that the nature of  a 
phase transition may crucially depend upon the constraint imposed on the 
system. Here we have an extreme manifestation of that effect; namely, the 
constant-pressure constraint shifts the transition temperature from 0QK--its 
value at constant vo lume- - to  a finite temperature T~(P). 
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It should be noted that the fact that the collapsed state is also Bose 
condensed is not in contradiction with the nonexistence theorems. (2) In fact, 
following Widom's (5) observation that 1D and 2D ideal Bose gases that are 
rotating or are in a uniform gravitational field do condense, Rehr and 
Mermin (6) noted that a crucial assumption in the proof  of these theorems is 
that the density be finite everywhere. Our result is thus another example in 
which the nonexistence theorems break down due to the occurrence of an 
infinite density. Furthermore, it is clear that Widom's results should follow 
from the general rule that Bose condensation will occur once the pressure 
even locally exceeds Pc(T). 

In Section 3' we discuss the quite unusual thermodynamics of the "con-  
densed" phase. In particular, when boxlike boundary conditions are imposed 
on the system the total volume V is subextensive: V oc N 1/2, where N is the 
total number of particles. 

Real Bose gases cannot have infinite density and therefore cannot 
collapse in this way. In Section 4 we discuss the various possible effects of 
interactions on the above transition, drawing on the insight provided by 
quantum lattice gas models (7) We conclude the section with a discussion of 
possible interpretations of the recent experimental results of Bretz and Dash (8) 
on submonolayer films of helium. 

In the appendix we give a detailed derivation of the thermodynamic 
functions of the 2D Bosegas which we think is essentially correct for both the 
normal and the condensed phases of the system, and also for the transition 
region between the two phases. The width of the transition region is calcula- 
ted. Its other properties will be discussed in a future article. 

A preliminary report of this work has appeared in Ref. 9. 

2. T H E R M O D Y N A M I C S  A N D  S U S C E P T I B I L I T Y  OF THE T W O -  
D I M E N S I O N A L  IDEAL BOSE GAS 

All thermodynamic functions are expressible in terms of the following 
functions (Ref. 1, Section 7): 

Fo(c 0 ~ ~ s -~ exp( - sa )  (1) 
s = l  

In particular, for the 2D gas we will need 

Fo(a) = [exp(a) - 1]-1 (2) 

Fl(c0 = - ln[1 - e x p ( -  a)] (3) 

and F2(a), which is not an elementary function but has the following be- 
havior (Ref. 1, Appendix): 

F2(a) -+ ~ 2  + a In a as a -+ 0 (4) 
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The particle density is given by 

n = (2=)-2f  d 2 k { e x p [ ( h 2 k 2 / 2 m k B T )  + ~1 - 1} -1 

= (mkBT/2~rh2)Fl (a)  (5) 

where m is the boson mass, kB is Boltzmann's constant, and 

o~ =_ - ~ / k ~ r  (6) 
where t* is the chemical potential. Thus, using Eq. (3), we see that 

c, = - ln[1 - e x p ( - T o ( n ) / T ) ]  (7) 
where 

To(n) - 2~rh2n/mkB (8) 

is a characteristic n-dependent temperature. The internal energy per particle 
is given by 

u = n-  1(2~r)-2 f d 2 k ( h 2 k 2 / 2 m ) { e x p [ ( h 2 k 2 / 2 m k ~ T )  + ~] _ 1} 1 

= kBTF2(oO/F~(cO (9) 

Using Eqs. (5) and (9) and the relation 

P = nu  (10) 

we easily show that 

P = mkB2T2Fz(~) /2rr2h = kBTF2(c*) / )~ (11) 

and 

and 

c~/kB = 2F2(~) /Fl (~)  - FI (~) /Fo(~)  (12) 

cp/kB = 2F2Oz){[2Fz(cOFo(~)/FI(a)2 ] - 1}/Fl(a) (13) 

where Ao~ --- (2~rh2/mkBT) ~/2 is the thermal de Broglie wavelength and c~ and 
cp are the specific heats (per particle) at constant volume and pressure, 
respectively. 

From Eq. (11) we see that if the pressure P is fixed and the temperature 
is lowered, F2(a) must grow. However, its maximum value rr2/6 occurs when 
c, = 0, at which point F~(a) and hence the density n diverge. This occurs at a 
finite, pressure-dependent temperature 

To(P)  = [2~rh2P/mkB2F2(O)l ~2 = (12h2P/rrmkB2) 112 (14) 

Figure 1 is a sketch of the P - T  diagram, where the curve 

P = rrmk~2T2/12h  2 -- P c ( T )  (15) 
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Fig. 1. Qualitative phase diagram of the 1D or 2D ideal Bose gas in the P-T plane. 
Unless the effect of the boundaries is taken into account (cf. Section 3), the gas will be 
completely collapsed along the solid curve P = Pc(T) [see Eqs. (15) and (24)] and could 
not exist in an equilibrium state with P > Pc(T), even as a condensed phase. The dashed 
curve is a typical isochore. Cooling at constant volume avoids the condensed region. 

separates the normal region from the condensed region. It appears as though 
the temperature of the system cannot be lowered below To(P) at fixed pressure, 
nor can the system sustain a pressure greater than Pc(T) at fixed temperature. 
Figure 2 is a sketch of a typical isotherm in the P - V  plane. We note that 
(6P/cgV)r vanishes as V-+ 0. 

In contrast to the above constant-pressure results, we see from Eq. (7) 
that if the temperature is lowered at constant density (or volume), ~ attains 
its minimum vMue of  zero--leading to a collapse of the gas--only when T - +  0. 

We next calculate the susceptibility in the noncondensed state. Let us 
define the correlation function 

g(r) =- @+(0)~b(r)) (16) 

where ~b(r) is the particle field operator. The susceptibility X, which is a measure 
of the response of @(r)) to a thermodynamically conjugate external field, is 
then given by 

X = ( k B T ) - l ( d r  g(r) (17) 
J 
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Fig. 2. Isotherms in the P - V  plane. The solid curves represent qualitatively the isotherms 
of the ideal gases. Along the 3D isotherm the pressure is constant from point a to b, 
while along the 1D or 2D isotherm ~P/O V = 0 only at the point V = 0. With a small hard 
core a deviation from ideal behavior--indicated by the dashed curves--is expected only 
for small V in the 2D and 3D gases. The plateau at small V is expected to disappear 
completely in the 1D gas. 

I t  t h e n  fo l lows  t h a t  

X = No/kBT (18) 

where  No is the  n u m b e r  o f  par t ic les  in the  lowes t  s ingle-par t ic le  s tate and  is 

g iven  by  the  usua l  Bose  p o p u l a t i o n  f u n c t i o n  

No = [ e x p ( - i ~ / k , T ) -  l ]  -1 = [exp(a) - l ]  -1 (19) 

Le t  us n o w  def ine  the  va r i ab l e  

==- T / T c ( P )  - 1 

Usings  Eqs.  (4) and  (11), we f ind tha t  

a ---> - 7r%/(3 In ~) 

T h e r e f o r e ,  as T - +  T,(P) + 

n--~ - (3mP/~ah2)  112 In e, 

c, -+ -rr2kB/(3 In ~), 

(20) 

as T - +  To(P) + (21) 

c~, - +  ~ '2kB/3E( ln  E) 2 
(22) 
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As T - +  0, with n and hence To(n) held constant, 

cp -+ (r?kB/9)(T/To) a exp(To/T) (23) 
G -+ Or2kB/3)(T/To), X --> (kBT)- I  exp(To/T) 

A similar analysis for the 1D ideal Bose gas leads to the following results. 
At fixed pressure, there exists a collapse temperature given by 

To(P) = [32rrh2P2/m~(3/2)2] *la (24) 

where ~(x) is the Riemann zeta function. As T - +  To(P) +, with E = T/Tc(P) - 1, 

n -+ const x (mP/h~)l/a/d 12, cp -+ const x k~/e ~ 
(25) 

cv -+ const x k~E, X -+ const/kBTc e2 

At a fixed linear density n, there again exists a characteristic temperature To, 
given by 

To(n) =- 2rrh2n~ /mkB (26) 
such that as T - +  0 

cp ~ const x kB(To/T), 
c~ -+ const x k~(T/To) 112 
X --~ const x To/kuT 2 

(27) 

3. THE C O N D E N S E D  PHASE OF THE 2D BOSE GAS 

From the results of  Section 2 one might be tempted to conclude that the 
2D ideal Bose gas cannot exist in states with a pressure greater than Pc(T). 
However, those results were obtained by working in the thermodynamic 
limit and replacing all sums over single-particle states by integrals. It  turns 
out, as might have been expected, that this is not a valid procedure for 
P > Pc(T). In the appendix we show that a correct procedure is to treat the 
ground-state term in these sums exactly, while still using a slightly modified 
integration approximation for the sum on all the other states. It is also essential 
to defer taking the thermodynamic limit until the end of the calculation. 

The equations for N and P thus become [see Eqs. (A.34) and (A.18) in the 
appendix] 

N = No + VFl(f lq + oO/A2h (S') 

P = (Nolo~V) + [kBTF2(Sq + c0/k~h]+ [qF~(/?q + cz)/a~h] (11') 

where/3 _= 1/kBT, 

No - 1/[exp(/%0 + a) -- 1] 

is the occupation number of the ground state, and % and q are the energies of  
the single-particle ground state and the first excited state, respectively. The 
exact value of q is not important,  however, except perhaps in a small transi- 
tion region around Pc(T) (see the appendix). Similarly, the last term in (11') 
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is important only in the transition region. Below Pc(T), Eqs. (5') and (11') have 
solutions where ~ = O(1) and No = O(1), and therefore El, as well as the 
first term on the rhs of both equations, can all be neglected. Above Pc(T), the 
only role of ~1 is to keep the arguments of F1 and F2 from falling below 
O(1/V), as we shall presently see. When this is secured, the last term of (11') 
is at most of order O(ln V/V), and is thus again negligible compared to the 
second term. 

Since the second term on the rhs of Eq. (11') is bounded by Pc(T), the 
only way we can hope to satisfy this equation when P > Pc(T) is through a 
significant contribution of the other terms. The first term represents the 
ground-state contribution to the pressure and is therefore strongly dependent 
upon the boundary conditions at the walls of the box. If  periodic boundary 
conditions are imposed upon the single-particle states, % = 0 and the first 
term vanishes. If, on the other hand, the wave function must vanish at the 
walls, we get 

% = O(h2/mV) ~ 0 (28) 

This rather unusual situation--in which results depend upon the boundary 
conditions--forces us to consider carefully what boundary condition is 
appropriate. 

The boundary condition is really a mathematical artifice used to circum- 
vent the need to consider explicitly the forces exerted by the walls that keep 
the particles inside the box. If  the walls could be represented by a truly 
infinite potential barrier, the zero boundary condition would be rigorously 
correct. Even for realistic walls, it appears to be much better justified than the 
periodic boundary condition. We therefore use it to calculate the first terms 
on the rhs of Eqs. (5') and (11'). 

In order to solve Eq. (11') for ~ when P > Pc(T), assuming for the mo- 
ment that we can neglect the last term, we must have 

No%/V = O(1) (29) 

Therefore, since % = O(1/V), we find 

No ~ (%/kBT + e~) -~ = O(V 2) (30) 

This equation requires c~ to be negative and of order O(1/V), so as to cancel 
most of/3%, hence the importance of el in (5') and (11'). Consequently, using 
Eq. (3) and the fact that ~z - % = O(1/V), the second term on the rhs of 
Eq. (5') becomes 

VFI(,,/k~T + ~)/a~ = O(Vln V) << No (31) 

and we can indeed neglect it. We thus have 

N ~ No = O(V 2) (32) 
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i.e., all the particles (except for a negligible number) go into the condensate 
and the system collapses to a volume which is subextensive: 

V = O ( N  1/~) (33) 

The total pressure can thus be written as 

P = N P o  + P c ( T )  (34) 

where 

Po = - ~ % / o v  = % / v  (3s) 

is the pressure of a single particle in the lowest state and depends only on the 
volume and the shape of the box, but not on the temperature. 

Even though the volume is subextensive in the condensed phase, it can 
still be rather large. As a function of pressure it has the following form: 

V ,.~ { N / [ P  - Pc(T)]} ~/2 (36) 

Close to the transition point one may also express this equation in an alterna- 
tive form: 

V N { N / [ T c ( P )  - T]} 112 (37) 

These expressions are valid for the condensed phase except inside a very 
small transition region around P c ( T )  over which the system changes from the 
normal to the condensed state. The size of this region of course goes to zero 
in the thermodynamic limit. A similar behavior is exhibited by the entropy, 
which in the condensed phase is proportional to V [see Eq. (A.40)]. In Fig. 3 
we have sketched qualitatively some of the interesting thermodynamic 
quantities as functions of T at a fixed P. 

An interesting result that emerges from these calculations is that, although 
all the usual extensive thermodynamic quantities tend continuously to zero 
(on the scale of N) as the condensation point is approached from the normal 
phase and remain zero in the condensed phase, the occupation number No 
of the lowest state undergoes a jump from essentially zero to essentially N. 
Thus, although the transition is certainly not of the first order in the usual 
sense, the order parameter which characterizes it does undergo a discontinuous 
change. This result reminds us of the puzzling property of thin films of 
superfluid helium, namely that the superfluid density p~ appears to be dis- 
continuous at the transition point ~1~ in contrast to the transition in bulk 
helium, where p~ goes to zero continuously at the lambda point. 

4. E F F E C T S  OF I N T E R A C T I O N S  

The interactions between He atoms in real 4He fluid consist of a repul- 
sive, short-range potential (which we will replace by a hard core, for simplicity) 
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Fig. 3. Qualitative graph of some thermodynamic quantities as functions of Ta t  constant  
P. Shown are the particle density n, the fraction of particles in the ground state No~N, 
and the heat capacity per particle c~. We assume a large but  finite total N. 

and a long-range attractive tail. ~1~ Each of these parts plays an essential and 
distinct role in determining the properties of  real ~He fluid. 

We begin by discussing the effect of  the hard core. In one dimension 
even a small hard core has a catastrophic effect on the transition since the 
particles cannot move past each other. Indeed, the 1D Bose gas with a 
repulsive delta-function interaction is equivalent to an ideal 1D Fermi gas ~12) 
and thus does not exhibit any of the characteristics of the transition. A 1D 
Bose gas with a finite-size hard core is not expected to be radically different. 

The effect of the hard core is not as dramatic in two and three dimensions. 
In both cases we expect the hard core to become important  only when the 
density is so high that the interparticle distance is of the order of  the hard- 
core diameter. At such a high density (or small volume) there should be a 
sharp rise in the pressure (see Fig. 2). We therefore expect that for low pres- 
sures the phase transition will be retained in three but destroyed in two 
dimensions. Nevertheless, an inspection of Eqs. (22) reveals that a remnant 
of the transition may still occur even in two dimensions : As ~ --~ 0 the density 
increases logarithmically while c~ increases more rapidly--as rE(In ~)2]-~. 
But the deviations from ideal gas behavior begin only when the density is so 
high that the hard core interferes with the free motion of the particles. For 
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low pressures this begins to occur only for very small values of e. Our dis- 
cussion does not preclude the possibility of a large peak developing in c~ as a 
function of ~ long before deviations from ideal gas behavior become important. 

The addition of an attractive part to the hard core will assist in the 
constant-pressure transition. Thus, the collapse at constant pressure of the 
3D gas is expected to become a phase transition in which the density increases 
discontinuously to a noninfinite value as the temperature is lowered. One 
would also expect that at least for weak enough interactions No would in- 
crease discontinuously. This conclusion should be valid at pressures so low 
that the volume per particle V/N around the point where the transition takes 
place in the absence of interactions is much greater than the hard-core volume 
vc. This conclusion is also in agreement with the phase transition of ~He at 
low pressures, where the system makes a transition directly from the gas 
phase to a superfluid liquid (Ref. 1, Section 1). Our qualitative reasoning 
does not tell us what will happen in two dimensions except that there is now a 
chance for a transition to take place. Whatever may be the case, Bose con- 
densation is ruled out because the density is bounded. 

We get more definite conclusions using the quantum lattice gas (QLG) 
model c7~ for the interacting system, of which a very clear discussion is found 
in Ref. 13. In the simplest version o f a  QLG with a hard core and no attractive 
interaction the corresponding magnetic model is a ferromagnetic, nearest- 
neighbor, isotropic X- Y model and is represented by the Hamiltonian of Eq. 
(38) below with Jll = 0. This model is believed to have a transition in three 
dimensions but was proved by Mermin and Wagner c1~ not to have sponta- 
neous magnetization in the x or y directions (corresponding to Bose con- 
densation in the QLG) in one and two dimensions. This result merely 
confirms our previous conclusion, namely that the presence of a hard core 
and the nonexistence theorems of Ref. 2 rule out Bose condensation. The 
question of whether one can have @~) r 0, corresponding to a transition 
into the liquid state, is related to the magnitude of the attractive part of the 
interaction, as discussed below. 

The situation changes markedly when the attractive part of the interac- 
tion is introduced. A Heisenberg-Ising model is obtained, with the Hamil- 
tonian 

H = + + - h (38) 

where ~c~J~ signifies a sum over nearest-neighbor spins, the cr~ ~ are Pauli spin 
operators, h represents an external magnetic field and is related to the chemical 
potential, and JIr and J• are both positive and related to the strength of the 
attractive forces and to the hard core size, respectively. 

In one dimension, phase transitions cannot occur. In two dimensions 
two cases are distinguishable: 
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(a) S t rong a t t r ac t ion :  Jll > Jx- Here  we expect  a phase  t rans i t ion  to  a 
state with nonzero  @~) bu t  with no Bose condensa t ion .  ~ 

(b) W e a k  a t t r ac t ion :  JIt < J• Here  no definite s ta tement  can be made.  5 

We conclude  with  a br ief  s ta tement  of  four  as yet  unanswered  quest ions  
raised by  this paper .  

(a) Is there  a phase  t rans i t ion  in a 2D Bose fluid wi th  a ha rd -co re  and  
weak  a t t rac t ion  ? 

(b) Whi le  in three d imensions  the phase  t rans i t ion  at  cons tan t  P is 
always first order ,  wi th  or  wi thout  interact ions,  the phase  t rans i t ion  in two 
d imens ions  is of  a different k ind  in the ideal  gas bu t  might  become an o rd ina ry  
f i rs t -order  t rans i t ion  in the presence of  a t t rac t ive  interact ions.  

(c) In  the case of  the f i rs t -order  t rans i t ion  in the 3D ideal  gas, we do  not  
know whether  phase  separa t ion  actual ly  occurs :  This  depends  u p o n  the 
surface tension,  which m a y  be absent  in the ideal  gas bu t  will r eappea r  when 
a t t ract ive  in teract ions  are  present.  

(d) Bretz and Dash  <8~ ob ta ined  a peak  in the specific hea t  o f  s u b m o n o -  
layer  ~He films at  a finite tempera ture .  This  result  was a t t r ibu ted  (15~ to in- 
homogenei t ies  of  the substrate ,  which p roduce  nonun i fo rm potent ia ls  tha t  
can also br ing  abou t  an  incipient  Bose condensa t ion  s imilar  to the one we 
have been discussing and  a consequent  peak  in the specific heat.  Were  these 
exper iments  pe r fo rmed  under  cons tan t  la teral  pressure,  such a peak  could  be 
re la ted to the one tha t  we find. Even if  this is not  really the case, such behav ior  
would  still be ob ta ined  if the system b roke  up into a series o f  drople ts  due to 
a t t ract ive in teract ions  6 and /o r  substra te  inhomogenei t ies .  ~15~ In tha t  case 
each d rop le t  would  be, effectively, under  something  like a cons tan t  pressure.  

Fu r the r  invest igat ion is necessary in o rder  to de termine  whether  there is 
any connec t ion  between the t rans i t ion  we have found  in a 2D Bose gas and 
the super f lu id- to-normal  t rans i t ion  observed in the somewhat  thicker  hel ium 
films where superf low and th i rd  sound  can occur. We  have ment ioned  in 
Section 3 the fact tha t  in these films the t rans i t ion  seems to be accompan ied  
by a j u m p  in.0~ even though  none  o f  the usual  extensive proper t ies  such as 

4 This phase transition is not ruled out by the theorem of Ref. 14. We expect it to occur 
since the case JH > J• should be qualitatively similar to an Ising model. We also note 
that while the usual spin wave argument does rule out spontaneous magnetization in the 
isotropic case, it allows for a finite @z) in this case. 

5 We know that in the ground state @~) vanishes while <~x) and/or <a ~) do not vanish. 
Mermin and Wagner (14~ showed that <ex) = <~)  = 0 for nonzero temperatures. 
Hence, since higher temperatures usually lead to a smaller order parameter, we might 
expect that <~) = 0 for all temperatures. Nevertheless, the rigorous nonexistence 
theorems do not rule out a transition into a state of nonzero <a~) at a finite temperature. 

6 Both the effective mass and the strength of the attractive interaction for adsorbed He 
atoms will be different from those in the gas. A larger ratio J~l/J• seems reasonable. 
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volume and entropy have any discontinuity. The jump in No at the condensa- 
tion point of the 2D Bose gas and the lack of any jump in other extensive 
quantities could be connected with the above-mentioned experimental observa- 
tion on helium films. But even if there is no connection (and this might well 
be the case, since a superfluid helium film is very different from a 2D ideal 
Bose gas), our model at least provides an example of a system where a superfluid 
transition with such properties is possible. Therefore one should not im- 
mediately rule out the possibility that the observed onset of superfluidity in 
thin helium films is in fact a phase transition, rather than a threshold of some 
strong attenuation mechanism. (1~ 

We finally note that our results were derived using the grand canonical 
ensemble, as is usually the practice in the theory of Bose-Einstein conden- 
sation. I f  another ensemble, for example, the canonical one, were used, the 
mathematics would be greatly complicated. Ordinarily, a change in the 
statistical ensemble used should not essentially alter the values of average 
quantities but may affect only the fluctuations around the average. It is an 
interesting open question whether this will be the case here, or whether 
more drastic changes will follow, for this rather unusual system. 

A P P E N D I X .  S T A T I S T I C A L  M E C H A N I C S  OF THE 2D IDEAL BOSE 
GAS 

Our starting point is the grand-canonical partition function Za given by 

Zo = Tr e x p ( - f l ~  - a~ )  = ~ [1 - exp(- f l% - a)] -1 (A.1) 
k 

where ek = h2k2/2rn, and where/~r and ~ are the Hamiltonian and particle 
number operators, respectively. The internal energy U is given by 

U = - ,~( lnZa)/Ofi  = ~ ~/[exp(fi% + a) - 1] -1 (A.2) 
k 

and the pressure is given by 

~-Z--V~ 1 0 l n Z c  ~ ~Ek/cgV (A.3) 
P -  =13 e V = - exp(/3ek + a ) -  1 

If  the volume of the system is varied without changing the shape (i.e., the 
ratios of all linear dimensions to each other are kept fixed), we find that 
e~ ,,~ 1/V. Therefore 

~%/0 V = - %/V (A.4) 

and we can write 

P = U~ V (A.5) 
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This is an exact result. One might be tempted to use another well-known 
relationship to calculate P, namely 

P = ( k B T / V )  in Za (1.6) 

This is not exact, because (A.6) is derived under the assumption that In Za 
is an extensive quantity. But the ground-state term in In Ze is not'extensive, 
nor may it be discarded here, as we shall see later. [See the discussion following 
Eq. (A.18).I 

In what follows, we will assume that/3, i.e., T, is finite, i.e., of  order one. 
Using (A.4) or (A.5), we can write P in the form 

1 ~ e~ (A.7) 
P = -V exp(/3% + ~) - 1 

In Fig. 4 we show a schematic graph of the summand of this equation, 

fle/[exp(fle + c 0 - 11 (A.8) 

as a function of e, assuming that ~ is slightly negative, so that 

fleo + c~ = o ( l / V )  (1.9) 

where eo is the energy of the single-particle ground state. We will see later that 
this assumption begins to hold when the condensation point is approached 

~'f I /e , ( I )  

I 

I I 

0 ( I )  

I I 

E 2 E 3 

PARTICLE ENERGY 

E 0 El /2 E I 

SINGLE 

Fig. 4. Qual i ta t ive  g r aph  of  the  function,  #e[exp(flE + ~) - 1] vs. the  s ingle-part icle  
energy �9 for  /%0 + ,~ = o(1/V). This  func t ion  shoo t s  up  to large values,  i.e., o f  o rder  
1/o(1), only  in a region o f  o rder  o(1/V) a r o u n d  co. The  s ame  g r aph  also descr ibes  
qual i ta t ively  the  func t ion  (A.30), the  s u m m a n d  of  (A.37), and  m o s t  o ther  s u m m a n d s  
which  migh t  appea r  in such  a s u m  on  single-part icle s tates .  
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closely enough from the normal phase, and continues to hold in both the 
transition region and in the condensed phase. We assume zero boundary 
conditions for the single-particle wave functions, so that 

e 0 = O(1/V) va 0 (A.10) 

It is clear from Fig. 4 that, except for a neighborhood of eo that is of order 
o(1 /V) ,  (A.8) is perfectly smooth and finite, and is moreover a monotonic 
decreasing function of e. It is also concave upward. 

The last properties result from the fact that ~ is slightly negative. Hence, 
the derivative of (A.8) with respect to e is 

[e'~+~(1 - p e ) -  1]/(e ~*+~- I) 2 ( a . l l )  
Since 

1 - f ie  < e - e ~  ( A . 1 2 )  

the numerator of (A.11) satisfies 

e~+~(1 - fie) - 1 < e ~ - 1 < 0 (A.13) 

That the second derivative is positive, and the function (A.8) therefore 
always concave upward, follows from the following considerations: 

d [ee~+~(1 - f i e )  - 1-] fie e~+6 
[ (-fi-+~ 22 ]-)~ ~ _ ( ebb+6 _ 1) a [fle(ee~ +6 + 1) - 2(e e~ +6 _ 1)] 

The square brackets on the r.h.s, can be developed as follows: 

fie[ 2 + ( f l ' + c O  +(/~e+~)22~ + " ' 1 - 2 [ f l e + ~  + (fle+~)22, + '"1  

= [  (/3e+~)2+(/%+~)a2~ + ( f i e + c 0 ~ ] 3 ~  +' '" 

- ~ [ / % + ~ + ( f i e + c 0 2 2 !  + ' " ]  

- 2 c ~ - 2 [  ( / 3 e + e 0 2 + ( / 3 e + a ) a  ] 2 !  3! +"" 

> - c ~ [ f i e + c ~ +  (f le+~)2 ] 2[ + . . . .  2a 

= -c~(e ~+~ - 1) - 2~ > 0 

because cc is negative. 
It is now reasonable to expect that we might be able to approximate the 

sum in (A.7) for % r % by an integral. In order to make this statement more 
precise, we will specialize to the case where the % are nondegenerate and 
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equal ly  spaced in energy. Since (A.8) is a decreasing funct ion,  a lower b o u n d  
to the sum is given by  the integral  o f  (A.8) f rom e 1 to infinity: 

E1 exp(/?E + ~) - 1 < exp(/?ek + ~) - 1 E 0 

where 1/Vg is the level spacing, which is of  order  O(1/V). Because (A.8) is 
also concave upward ,  an upper  b o u n d  to the sum is given by a similar  
in tegral  f rom q/2 to infinity, where q/2 is ha l fway between % and  El. We  can 
thus write 

1 exp(/3e + c 0 - 1 < ~ 0 exp(p% + ~) - 1 

f o~ Vge de (A. 14) 
< exp(]~ + , )  - 1 

1/2  

The integrals  in (A.14) are o f  o rder  O(V) each, and  they differ by less than  

�89 + c0 - 1] = O(1) (A.15) 

We can therefore  write 

-V ~ exp(/3e~ + c 0 - 1 = exp(~e + c 0 - 1 + O (1.16)  

Actual ly ,  the precise values of  e~ will depend  on the shape of  the box,  
and  they will usual ly  be nei ther  equal ly  spaced nor  nondegenerate .  The 
average level spacing will, however,  be independent  of  e and  of  the precise 
shape of  the box,  and we expect  tha t  (A.16) will cont inue to hold  even then, 
wi th  1/Vg now s tanding for  the average level spacing. I t  is not  easy to prove 
this r igorously,  and  we do  not  a t t empt  to provide such a p r o o f  here. v 

Equa t ion  (A. 16) is fur ther  t r ans fo rmed  by defining x -~ e - q .  We  thus 

find 

f ~  ged~ _ _ fo ~ g(x + q) dx 
1 exp(/3e + c 0 - 1 exp(/~x + /3q + c 0 - 1 

kBT q 
= ~ F2(/%1 + c0 + A--~h F~(/3q + a) (A.17) 

7 In the event that future investigations will prove the error estimate of Eq. (A.16) to be 
overly optimistic [due to an unforeseen dependence on details of the level distribution 
which will lead to, e.g., an O(V -~12) error], our only result that will be affected is the 
estimate of the transitio n region. All the rest of the discussion, including that of. the 
importance of the first term on the right-hand side of Eq. (A.18), will remain valid. 
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We can thus write (A.7) in the following form: 

%/V 
P = exp(fi% + a) - 1 + F2(fiel + cO 

,1 (1) 
+ A--~t~ F~(fir + cz) + 0 (A.18) 

Note that the first term on the rhs is the pressure exerted by particles in 
the ground state. We have already discussed this term in Section 3 [see Eq. 
(28) and the discussion thereof]. But we would now like to point out that 
this term is not reproduced by the incorrect equation (A.6). This explains 
why it was essential to use the correct expression (A.3) for P. The problems 
with (A.6) arise due to the fact that the condensed state we are considering 
has a subextensive volume. 

Although we have derived Eq. (A. 18) under the assumption (A.9), it is 
easy to argue that it is still valid even when (A.9) is not satisfied, i.e., when 

fl*o + a >10(1/V) (A.19) 

This is because (A.8) is now finite even at E0. We can therefore use the integra- 
tion approximation for the entire sum and the error thus incurred is still only 
O(1/V), though one has to argue more carefully to derive this result since 
(A.8) may now have a region with a positive slope for small E. For this case 
the first term in (A.18) is of  the same order as the error, i.e., O(1/V). 

The third term in (A.18) is also of  order O(I /V)when  ~ is large. But 
when ~ is small this term combines with the second term to give a result which 
is independent of the precise value of ~1 in all the significant orders: 

k~T ~1 

k B T k sT~_T -_-' z~. ~do) + ~ (&~ + ~) ln(&l + ~) 

~ In(&~ + ~) + o(&~ + ~) 

kBT kBT~X , , ̂  
= A~h F~(O) + ~ m(t~E~ + a) + O(flE~ + a) (A.20) 

I f  a > O(1/V), we can neglect El, and if a ~< O(1/V), we can write 

ln(flq + ~) = - I n  V + O(1) (A.21) 

which is again independent of the precise value of El. This result is of impor- 
tance if we wish to investigate the transition region between the normal and 
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the condensed phases around Pc(T). From (A.18) and (A.20) we find that, 
for small a, 

A p  =_ p - Pc(T) "~ eoNo + kBTce = V ~ ln(/%1 + ~) (A.22) 

In the condensed phase 

%No O(1)>> kBTc~ (~_~_) V = ~ ln(/%1 + c 0 = O (A.23) 

while in the normal phase 

EoNo=v O( 1 ) ~  << --~tzkBzT--~a ln(/3q + ~) = O(1) (A.24) 

The transition region is reached when both terms on the rhs of (A.22) are 
equal. This leads to the following relationships: 

~ o  + ,x = O ( 1 / V l n  V) (A.25) 

No = O(Vln V) (A.26) 

a = - ~ %  + O ( 1 / V l n  V) = - O ( 1 / V )  (A.27) 

The exact equations for the edge of the transition region APe and. for/%o + 
at that point are 

/3% + ~ = - a~ / [V ln /3 (q  - %)] (A.28) 

~XPc = - 2Eo[ln/3(q -  o)l/a h = O(ln v / v )  (A.28a) 

The other quantity we are interested in calculating is 

N = ~ {1/[exp(/3Ek + c 0 -- 1]} (A.29) 
/r 

The summand here is always a monotonic decreasing function o f~ ,  and is also 
concave upward. Moreover, if we consider the function 

(1/V)/[exp(SE + cO -- 1] (A.30) 

under the assumption (A.9), we find that it has a form qualitatively described 
by Fig. 4 for small E. We can thus again sandwich the sum for ek r co between 
two inequalities if we assume a constant level spacing: 

s ~ Vgd~  

1 exp( /ge  + c 0 - 1 

The integrals differ by less than 

< 
1 

exp(/3% + ~) - 1 

s oo V g d E  

< exp(flE + c 0 -  1 112 

(A.31) 

�89 + c 0 -- 1] = O(V)  (A.32) 
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and we can write 

o exp(fle~ + c 0 - 1 

f ~ Vgde 
= 1 exp(fle + c 0 - 1 + O(V) 

fo ~ Vgdx V 
= exp(flx + fie 1 + c 0 - 1 + O(V) = ~ Fl(flel + ~x) + O(V) 

V ln(flel + c 0 + O(V) = O(Vln V) + O(V) (A.33) 
= ~ 

Therefore the error is less than the leading term by O(1/ln V) when (A.9) is 
valid, and we can write 

N ~ No + (V/a~h)F~(flq + cz) (A.34) 

I t  is easily verified that this equation is valid even when (A.9) is not satisfied. 
This equation supplies us with another way of defining the transition 

region: Since the first term on the rhs is negligible in the normal phase while 
the second term is negligible in the condensed phase, we set 

No = (V/Z~h)F~(flq + ~) = --(V/A~h)In(flex + ~) (A.35) 

at the edge of the transition region. This equation is exactly the same as 
(A.28), which was derived in a different way, starting from 2xP. We also learn 
from this that at  APe 

No = N/2 = O(Vln V) (A.36) 

By making for 

In Zc = - ~  ln[1 - exp( - f le  k - ~)] (A.37) 

considerations similar to those made for P and N, we find that 

In Za = - ln [1  - exp( - f l% - ~)] 
+ (V/~h)F2(flc~ + ~) + O(ln V) (A.38) 

when (A.9) is satisfied. It  looks as though both the ground-state term and the 
V(flq + ~) ln(flq + ~) part  of VF2 are then of order O(ln V), i.e., the same 
as the error. Nevertheless, if these terms are kept and the whole expression is 
differentiated with respect to either/3, c~, or V, one gets the right expressions 
for U, N, and P, respectively ? This occurs just because In Z~ is not a homo- 
geneous function of V. Thus, different parts of In Za behave differently when 
they are differentiated, some of them gaining in importance more than others. 
This also explains why one cannot assume that In Ze is extensive. The whole 
question of identifying the most important contribution to any thermody- 
namic quantity becomes tricky. We have (hopefully) not made any mistakes 
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so far because we never differentiated an approximate expression: Integration 
approximations for discrete sums were always made only after differentiating. 

Using the same caution, we calculate the entropy S from the exact 
relation 

S = kB ln Za + (U/T) + N k ~  (A.39) 

Substituting for the three terms on the rhs from (A.38), (A.5), (A.18), and 
(A.34), we get 

S -ln(/3% + ~) + 2V = + 

+ 1 + V(/3E1 + ~) A~h Fl(/3q + c0 + O(ln V) (A.40) 

The first and third terms are always no greater than the error in this ex- 
pression and may be neglected. When T-+ To(P) or P - +  Pc(T) in the normal 
phase, S obviously tends to zero (on the scale of N) because ~q  + a -+ O(1/V) 
and V ~ O(NII2). In the condensed phase the only significant term in (A.40) 
is the second one, which is of order O(NII2). 

By taking all the necessary precautions that we have outlined above, we 
can calculate cv and cp for the condensed phase outside the transition region 
between the two phases. The results are 

cv/kB = (2V/NA~)[F2(I~q + c 0 + /3 (q  - e0)F~(/3e ~ + ~)1 
+ O(1/N) 

= (2V/N)t~h)F2(O) + O(1/N) = O(N -~/2) + O(N -~) (A.41) 

cp/kB = [2PV2F2(O)/%A~hU](fleo + ~) 
x [1 + (V/h~h)(13eo + ~)F~(l~q + cO + O(1/V)] 

= O(1/N ~2) + O(log N / N )  + O(I lN)  (A.42) 

We note that in % as in P, we also get the first correction to the leading 
order correctly. 

Using (A.22), (A.23), and the fact that No = N, we can write 

Ap  = N% V(1/V ~) (A.43) 

V = (N%VIAP)  ~'~ (A.44) 

V21Eo = V~leoV = (~oV)~/Z(N/AP)al2 (A.45) 

Substituting the last result into (A.42) we get 

cvlkr3 = 2PF2(O)(EoV)~I21NA~h(AP)al2 (A.46) 

This would increase to infinity as P approaches Pc(T) from above, except 
that when the edge of the transition region [see Eq. (A.28a)] is reached, (A.46) 
ceases to be valid. Instead of increasing to infinity, cp then rounds off at a 
value that depends upon N. 
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